@
VOL 1 (2017) NO 3 l OIV
e-ISSN : 2549-9904
ISSN :2549-9610

INTERNATIONAL JOURNAL ON INFORMATICS VISUALIZATION

Model-Based Resource Utilization and Performance Risk Prediction
using Machine Learning Techniques
Haitham A.M Salih”, Hany H Ammar”

College of Graduate Studies, Sudan University of Science and Technology, Khartoum, Sudan
* Lane Department of Computer Science and Electrical Engineering, West Virginia University, West Virginia, USA
E-mail: a_hytham@hotmail.com, hammar@wvu.edu

Abstract-The growing complexity of modern software systems makes the performance prediction a challenging activity. Many drawbacks
incurred by using the traditional performance prediction techniques such as time consuming and inability to surround all software system
when large scaled. To contribute to solving these problems, we adopt a model-based approach for resource utilization and performance risk
prediction. Firstly, we model the software system into annotated UML diagrams. Secondly, performance model is derived from UML
diagrams in order to be evaluated. Thirdly, we generate performance and resource utilization training dataset by changing workload.
Finally, when new instances are applied we can predict resource utilization and performance risk by using machine learning techniques.
The approach will be used to enhance work of human experts and improve efficiency of software system performance prediction. In this
paper, we illustrate the approach on a case study. A performance training dataset has been generated, and three machine learning techniques
are applied to predict resource utilization and performance risk level. Our approach shows prediction accuracy within 68.9 % to 93.1 %.

Keywords - Machine learning, Performance, Risk prediction, WEKA.

[. INTRODUCTION e Resource-related performance requirement, that means the
Software Performance considered to be the most important utilization of a specific device, must fall into a specific
non-functional requirements especially for real time systems, range.
aircraft system, medical system, and ecommerce system [1]. Using current methods of software performance prediction
The Non-functional determine what software will do, as well as such as simulation, guessing, and software engineer previous
how the software will do it. In addition, non-functional experience have inconvenient results especially on complex and
requirements validation for the software so far does not get large scale software. Instead, machine learning can provides
enough consideration in the practical real life of the software methods, techniques, and tools that can help in solving many
engineers. Running after the market is still ruling in the software prediction problems for variety of software quality requirements
development life cycle, however the quality of the final product such as maintainability, performance, and hardware
suffers after being put the software in the business working configuration management [4].
environment [1]. The paper proposes a new approach for model-based resource
Software Performance risk means undesirable action that utilization and performance risk prediction by using machine
restrain the software to giving extreme functionality under all learning techniques. We used multiple-regression algorithm for
probable environment circumstances [2]. Early detection of resource utilization prediction, also we applied three machine
software performance metrics such as system response time, learning algorithms such as K-Nearest Neighbor, Support
hardware utilization, and system throughput is a key step to Vector Machine, and Naive Bayes to predict risk level. Firstly,
manage risks of software system before going to we will model the system by using annotated Unified Modeling
implementation phase [3]. The software performance Language (UML) diagrams such as use case, sequence diagram,
requirements can be categorized into two types: and deployment diagram. Secondly, we will map the annotated
UML models into performance model - Queuing Network
e Time-related performance requirement, that means the Model (QNM). Thirdly, we will solve the QNM model to
completion time of a particular operation, must be less than generate large training dataset by changing workloads and
a certain value. number of users. Finally, we will apply the new instances as a

101

test sets on the machine learning to predict resource utilization
ofthe servers and further to classify risks on the test sets as high,
medium, or low risk. Unlike the previous work, the approach
focuses mainly on software performance prediction at the early
modeling stages of software development life cycle. Unlike,
prediction after moving into implementation, which incurred
high cost and many software changes.

This paper is organized as follows: Section 2 presents the
material and method. Section 3 dedicated to results as well as
the explanation of results. In Section 4, we finished the paper by
the conclusion.

II. MATERIAL AND METHOD

Machine learning algorithms can be potentially powerful tool
to enhance resource utilization and software performance risk
prediction. Normally, performance modeling tools such as
Queuing Network Model, Petri Nets, and Markov Chain can
only produces quantitative performance indices for the software
models assessment. Furthermore, by collecting large training
dataset the machine learning algorithms can easily analyzes,
predicts and gives both quantitative and qualitative performance
indices. These powerful features of machine learning will free
the software engineers from the complexity process of
performance prediction and focus more on other software
development tasks.

A. Queuing Network Model (QNM)

Queuing network model is a mathematical model that used to
evaluate performance of computer systems [3]. The
fundamental parts of QNM are queues and service centers. A
queue is a buffer same to any queuing system. A service center
has a related queue including jobs to be served by that service
center.

To get performance attributes for any individual service
center, two kinds of information must be available. The average
arrival time of jobs R, and the average time consumed by service
center § to perform one job. Based on this information
following quality of services could be calculated:

e Utilization of each system component:
UL' =R * Si (1)
e Average of queue length:
a=uw/1-w)
e Average Response Time:
Si /(1= w) 3)
e Average population of the component:
pi=w/(1-w) (4
From the above equations it is possible to make calculations for
latency, throughput, and highly utilized service centers.

The population of the system is the sum of population of all
components:

P= P +P,+P, (5)

102

Where X, y, and z are the components of the system. In our paper
we will use Java Modeling Tool (JMT). JIMT is a free open
source suite uses many algorithms for the exact, asymptotic and
simulative analysis of queuing network models. [5].

B. Machine learning

Machine learning is the ability of the computer programs to
capture or develop new knowledge from existing or non-
existing instances for the purpose of enhancing the performance
criteria [6]. Software engineers and researchers have been
started using machine learning techniques in the area of quality
of service classification and prediction. Moreover, machine
learning has proved its efficiency to asset and optimizes model
based performance prediction. We used Waikato Environment
for Knowledge Analysis (WEKA) as a free tool for machine
learning. The machine learning can be categorized into
supervised and unsupervised learning.

1) Supervised learning: Supervised learning consists of
algorithms that reason from externally supplied instances to
produce general hypothesis which then make predictions
about unknown instances. Also, with supervised learning
there is existence of the outcome variable to orient the
learning process. There are many machine learning
algorithms for supervised learning such as Support Vector
Machine (SVM), K-Nearest Neighbor, and Random
Forests[7].

2) Unsupervised learning: In contrast to supervised learning
where there is existence of the outcome variable to direct
the learning process, unsupervised learning builds models
from data without pre-defined example. This means no
direction is available and learning must perform
heuristically by the algorithm examining different training
dataset.

C. Machine learning algorithms

There are various machine learning algorithms depending on
the application domain; only four techniques, that is
Multivariate regression, Naive base, Multi perceptron, and K-
Nearest Neighbor, will be discussed.

1) Multivariate linear regression: Multivariate linear
regression (MLR) is the most commonly used technique for
modeling the relationship between two or more
independent and dependent variables by finding a linear
question to observed data [8]. The general form of a MLR
can be given be:

yi = aptaiXiit... + aXik (6)
Yi = aotaiXiit... T axXikte; 7

where Xii,..., Xix are the independent variables, ay,...,ax the
parameters to be evaluated, y;'the dependent variable to be
predicted, y:the actual value of the dependent variable, and
e; is the error in the prediction of the i case.

2) Naive Bayes: Naive Bayes models are simple models, treats

all variables X; are independent given a special variable C.

The joint distribution is then given by

P(C,Xl, "'JXn) = P(C) H?:lP(Xllc) (8)

The univariate conditional distributions P(X;|C) can accept
any form such as multinomial for discrete variables,
Gaussian for continuous ones. When the variable C is
observed in the training dataset, naive Bayes can be used
for classification, by assigning test set example (Xi,...,Xn)
to the class C with maximum P(C|Xj,...,Xy5) [9].
K-Nearest Neighbor (KNN): K-Nearest is one of the
methods referred to as instance based learning which
categorized as supervised learning algorithm [6][10]. KNN
works by simply storing the training data set, and when a
new instance is applied, a set of similar related instances
that are neighbors is gathered from the training dataset set,
also KNN used to classify the new instance. Classification
is useful to take more than one neighbor into account and
then referred to as k-nearest neighbor.
Support Vector Machines (SVMs): Support Vector
machine (SVMs) finds separating hyper-planes between
training datasets that maximize the margin and minimize
the classification errors[6][11]. Margins sometimes known
as “geometric margin” and defined as distance between the
hyper planes dividing two classes and the nearest data
points to the hyper planes. The SVM algorithm is able to
work with both linearly and separable problems in
classification and regression tasks.

3)

4)

From the literature, Ganapathi used machine learning on
software performance prediction [12]. She proposed a machine
learning technique to predict/optimize multi components,
parallel system utilization and performance. The proposed
technique gathers the correlation between a workload’s pre-
execution characteristics configuration parameters, and post-
execution performance observations. Finally, the correlation has
been used for performance prediction and optimization. To
prove the methodology, she presents three cases on storage and
computer-based parallel systems. The outcomes suggest the use
of machine learning based performance modeling to improve
the quality of system management decisions.

The above work is very useful representation of using
statistical machine learning to predict the performance of
software systems; however, the approaches focused on software
systems that already designed and implemented not that are at
the early modeling stage.

Dubach and et al. used machine learning technique to explore
the good compiler architecture design [13]. He designed two
performance models and applied them to increase the efficiency
of searching the design space for micro architecture. Models
predict performance metrics such as processor cycles, energy
consumption, and the trade- off of the two characteristics.

Malhotra and et al. have employed machine learning to
measure software maintainability. Number of the word
“change” is observed over a period of three years on a dataset.

103

The researchers proved that when using Naive Bayesian
algorithm the classification performs better than other machine
learning algorithms [4].

Finally, Ipek and et al, used multilayer neural network, the
network trained on input data collected from execution on
targeted platform [14]. This approach is useful for predicting
many aspects of performance and it takes full system
complexity. The study focuses on the high performance parallel
application SMG2000. The model has predicted performance
within error 5% to 7% across a large, multidimensional
parameter space.

Annotated UML Models

pic
\\- /
T

Performance Models

2
4

Y
4

[Analysts |
1

\

N
R_.-"
Test set

v

Machine Learning

Training set

F Y

- =4
o ™
[‘
Prediction
Classification Regression

Risk level{Low, Medium,
High)

Server utilization, response
time, and throughput

L

Fig. 1 Methodology of resource utilization and risk prediction

However, the work of Dubach, Malhotra, and Ipek applied on
system that already designed and implemented, but they didn’t
start the prediction process of software performance from the
early modeling stage. Our approach emphasizes on building and
evaluating performance model, so that if the model gives
reasonable performance indicators then we will continue and
construct the model, otherwise the change will be on the model
itself not on the software when it would be running.

UML profile for performance, Schedulability, and time has
been announced by Object Management Group (OMG) as
standard specification mechanism [15]. Starting from model-to-
model transformation we have to take annotation tags and
stereotypes proposed in the profile, and the ability to add more
specifications. UML annotations concepts are enough to
describe performance attributes of software systems. Moreover,
extending the queuing theory with the machine learning is one
of'a new concept we have introduced in our paper.

The main contribution of the paper is to combine resource
utilization and performance risk prediction from annotated
UML models. The idea of our method is to combine the
performance and the risk on UML software models. In real life,
the exact quantitative performance prediction is not enough in
specific situations, such as e-business systems where the delay
in response time may lead to losing thousands of customers. In
addition, software engineers looking for decisions on leveling
the consequences of risk such as low, medium, or high risk.

We introduced a method to predict resource utilization and
performance risk from the software system modeled with
annotated UML diagrams. In this paper we considered
performance risk as both requirements: time related - resource
related, and we merged them. Moreover, we can predict
resource utilization by formulating the problem as statistical and
we apply linear regression algorithm. We also, predict the risk
level as (low, medium, or high) by formulating the problem as
classification prediction problem. To illustrate the method
clearly we presented the steps in Fig.1. Next we illustrated the
methodology by using a complete case study.

To prove the approach we will apply our method on
Hospital system Fig. 2 as a case study. The system under
analysis is part of the IT system of a hospital. The information
system manages the patient history, e.g. the arrival date in the
hospital, past diseases, or remarks related to his recovery as
daily measured temperature.

The medicines issues are managed centrally: doctors insert
the required quantity for a certain patient and the pharmacy of
the hospital make orders for the needed amount of a needed
medicine. Doctors insert data of patient’s visits and matters. The
nurses insert degrees of temperature, pressure. They also get
from the system the required medicine for the patient.
Moreover, there are functionalities that give the possibility to
create a new record for a patient and get a file searching for his
name or patient’s number.

104

i

T

&
&

Fig. 2 Hospital System Architecture as 3-tier architecture

<// /«> <,,,> <//,>

% % %

Application
Server

Database
Server

Web Server

We follow the steps of the method and apply these steps on the
case study.

A. Develop UML Models
Use case diagram: Each actor in a Use Case diagram may
represent a stream of requests arriving at the system. There may
be unlimited sequence of requests (open workload), or fixed
population of users requiring service from the system service
from the system (closed workload) [16].

Search for
Patient

Pharmey
—
Wake medicine order
% .Add rnedtcme %

Doctor Add patient temperature, Nurse

presure

Fig. 3 Hospital System Use Case Diagram

Sequence diagram: Shows interactions consisting of a set of
objects and the messages sent and received by those objects.
Sequence diagram address the dynamic behaviour of a system
with special emphasis on the chronological ordering of
messeages.

Doctor Browser Web Application DB Server
Server Server

f
| | [
| 1:Searchlnput | }

|

L Patient Info

J: Patient ID

th Search Query

Iahle patient

i
g |
| |
\ \
| |
| |

———

i
\
[
[

Fig. 4 Hospital System Sequence Diagram
Deployment diagram: Deployment diagrams are used to
model the physical resources available in the system. Each
resource is represented by a node in the deployment diagrams.

DBServert

Client WebiS erver

Applic ationServer
i ' DBServer?

DBServer

Fig. 5 Hospital System Deployment Diagram

B. Extract the Performance Model -QNM

The previous UML diagrams used to extract the QNM model.
QNM provides the modeler with a wide range of quantitative
evaluation of performance indices such as throughput, residence
time, response time, utilization, and system power. We used
JMT to run our hospital system model and generate a dataset of
results. The training dataset extracted by changing the workload
(number of users and type of load).

The dataset contains 194 instances and 6 attributes. The
attributes are number of users, system throughput, system
response time, web server utilization, application server
utilization, and databases servers’ utilization.

Fig. 6 Hospital System modeled as QNM Model

Fig. 6 represents the system under studying using JMT. The
first element represents the number of users NV and the model
evaluated separately for each value of V. The interaction of the
users with the system is provided by a web application with a
browser on client side and a typical 3 tiers on server. The
requests are submitted to a web server, in case of a static request
response immediately passed back to the client, otherwise the
web server communicates with an application server that
executes queries on a backend database and generated data are
passed back to the web server. At last, clients receive the
dynamically request. The storage consists of 3 database servers
in parallel. The redirection of a job to one of the storage servers
is made by a load balancer in a random fashion.

We subdivide the requests arriving at the system into two
groups: the request for a database search “Heavy Load” and the
request a database modification “Light Load”. In Table 1 we
reported the service demands for each station in the system and
for each class.

SERVICE DEMAND IN MILISEgSI]?II];)]; }:OR STATION IN THE SYSTEM
Light Load Heavy Load
Web Server 1.40 1.10
App Server 2.10 1.50
Storage 1 1.10 2.90
Storage 2 1.20 2.70
Storage 3 1.10 2.80

In Fig.7 we plotted global response time in function of the
number of customers in the system keeping constant the mix of
the two classes. Depending to the theory for high values of the
number of customers, the response time grows linearly.

0
181
w18
E17l
1L}
2161
2
wl &
i
21ar
@
YN

177
1.0L

01 02 D3 04

05 06 07 08

% of customers Niw.rt initial values
Fig. 7 System response time

In Fig.8 we reported utilization of each station with rising
number of customers in the system. The upper line refers to the
application server, the lower line refers to the web server and
the other three lines represent the storage servers.

=
=]
T

=
o
T

Lltilization

=
.
T

=
%)
T

=
[=]

00 0 02 03 04 05 06 07 08

% of customers Niw.rt initial values x10
Fig. 8 System utilization

In Fig.9 we plotted global system throughput in function of
the number of customers.

£ $ = &=
(&1 [N = n
T T T

System Throughput
o]

o
e
T

=
=

o0 o1 02 03 04 05 06 07 08

% of customers Niw.rt initial values bl 04

Fig. 9 System throughput

106

C. Use Machine Learning to Predict Server Utilization.

By using machine learning, we can accurately predict the
server utilization on a given workload. Specifically, we can
answer questions like: “How much the server utilization will be
if 500 users using the system concurrently?”

To answer the previous question we used the technique of
multi-linear regression. MLR is one of the machine learning
prediction algorithm used to predict numerical values. Table 2
shows the sample dataset for database server utilization. It
contains number of users, system response time, system
throughput, web server utilization, application server
utilization, and database server utilization.

TABLE 2
APPLICATION SERVER UTILIZATION FOR REGRISSION
MODEL TRAINING DATASET SAMPLE

#users | SysRes | SystThro | webUtli | AppUtli | DbUtli
10 | 1008.25 0.01 0.01 0.02 | 0.02
69 | 1009.16 0.07 0.09 0.13 | 0.11

128 | 1010.23 0.13 0.17 024 | 0.21
200 | 1012.04 0.20 0.26 0.38 | 0.32
413 | 1025.03 0.40 0.53 0.77 1 0.66
489 | 1041.00 0.47 0.62 0.90 | 0.77
500 | 1045.12 0.48 0.63 0.92 | 0.78
572 | 1106.41 0.52 0.68 0.99 | 0.84
649 | 1243.86 0.52 0.68 1.00 | 0.86
899 | 1714.08 0.52 0.68 1.00 | 0.88
1340 | 2542.67 0.53 0.68 1.00 | 0.89
35 | 1008.54 0.03 0.05 0.07 | 0.06
2740 | 5169.85 0.53 0.69 ? 0.91
433 | 1027.88 0.42 0.55 ? 0.69
520 | 1055.05 0.49 0.65 ? 0.80
600 | 1152.79 0.52 0.68 ? 0.85
710 | 1358.83 0.52 0.68 ? 0.86
1000 | 1904.06 0.53 0.68 ? 0.88
5000 | 9408.67 0.53 0.69 ? 0.92

D. Use the Machine Learning to Predict Risk Level

By using machine learning we can predict the level of risk
whether it is low or medium or high risk, if we apply the
software system on specific scenario. We can answer questions
such as: “What is the class/category of risk if 2000 users using
the system concurrently?”

Table 3 shows the training dataset for risk level prediction. It
contains number of users, system response time, system
throughput, web server utilization, application server
utilization, database server utilization and class of the risk.

To answer the previous question we apply new instances as
test set to predict the level of the risk. To enhance our work we
apply and compare between three machine learning algorithms;
Naive Bays, K-Nearest Neighbor (KNN), and Support Vector
Machines (SVMs).

TABLE 3
RISK LEVEL PREDICTION TRAINING DATASET

1) Naive Bayes: In Fig.11 we presented the accuracy of our
approach by using Naive Bayes algorithm. The figure

III. RESULTS AND DISCUSION
We have presented the results of our experiments after using
regression algorithm in prediction database server utilization. In
addition, we used three classification algorithms in order to
classify the level of risks whether it is high, medium, or low risk.
At the end, we make a comparison between the algorithms we
used.

A. Database server utilization prediction

We used WEKA as machine learning tool in order to predict
database server utilization. Fig.10. represents the regression
algorithm prediction with mean square error 0.01.

=== Evaluation on test split ===
=== Summary ===
Correlation coefficient 0.99
Mean absolute error 0.0067
Root mean squared error 0.0139
Total Number of Instances 194

Fig. 10 Prediction accuracy of database server utilization

B. Risk Level Classification

After prediction and using of server utilization database, next
step is to classify the level of the risk. In addition, we compare
between three machine learning algorithms Naive Bayes, K-
Nearest Neighbor (KNN), and Support Vector Machine (SVM).

#users | SysRes | SystThro | webUtli | AppUtli | DbUtli | class stated that mean square error is 0.23.
10 | 1008.25 0.01 0.01 0.02 0.02 | LR - -
=== Evaluation on test split ===
139 | 1010.50 0.14 0.18 0.26 022 | LR — —_
=== Summary ===
244 | 1013.47 0.24 0.32 0.46 0.39 | LR
516 | 1052.77 0.49 0.64 0.94 0.80 | MR Correctly classified Instances 53 91.3 %
1 0,
572 | 110641 052 0.68 0.99 084 | MR Incorrectly Classified Instances 5 8.6 %
Mean absolute error 0.06
623 1195.13 0.52 0.68 1.00 0.85 HR Root mean Squared error 0.23
960 | 1828.90 0.52 0.68 100 | 088 | HR Total Number of Instances 58
Fig. 11 Naive Bayes risk classification accuracy
134 | 1010.37 0.13 0.17 0.25 0.22 | LR
3700 | 6970.57 0.53 0.69 1.00 092 | HR Fig.12 stated the confusion matrix where 4 instances are
4890 | 9408.67 053 0.69 100 092 | 1R f:lasmﬁe(! as me.dlum risk Whlle Fhey are hlgh rlsl.<, anFl 1
instance is classified as medium risk while it is a high risk.
140 | 1010.51 0.14 0.18 0.27 023 | LR
167 | 1011.14 0.17 0.22 0.32 0.27 | LR === Confusion Matrix ===
518 | 1053.88 049 0.64 094 | 080 |2 a b ¢
22 4 0 a=LR
5000 | 9408.67 0.53 0.69 100 | 092]2 0 2 0 b=MR
1899 | 3591.77 053 0.69 100 | 0912 0 1 19 c=HR
Fig. 12 Naive Bayes risk classification confusion matrix
710 | 1358.83 0.52 0.68 1.00 0.86 | ?
567 | 1099.52 0.52 0.68 0.99 0.84 | ? 2) K-Nearest Neighbor (KNN): Fig.13 presented the accuracy
33 | 1008.59 003 0.04 0.06 005 | 2 percentage of KNN algorithm with mean square error 0.21.
80 | 1009.33 0.08 0.10 0.15 0.13 | 2 — —

Evaluation on test split

Summary

Correctly classified Instances 54 93.1 %

Incorrectly Classified Instances 4 6.8 %

Mean absolute error 0.05
Root mean squared error 0.21
Total Number of Instances 58

Fig. 13 KNN risk classification accuracy

In Fig. 14 the confusion matrix of KNN stated that 3
instances are low risk while they classified as medium risk,
and 1 instance is classified as medium risk while it is high

risk.
=== Confusion Matrix ===
a b
23 3 a=LR
0 12 b=MR
1 19 c=HR

107

Fig. 14 KNN risk classification confusion matrix

3) Support Vector Machine (SVM): In Fig.15 we presented the
accuracy of SVM for prediction of risk classification. The
mean square error is 0.4.

Evaluation on test split

=== Summary ===
Correctly classified Instances 40 68.9 %
Incorrectly Classified Instances 18 31.03 %
Mean absolute error 0.31
Root mean squared error 0.40
Total Number of Instances 58

Fig. 15 SVM risk classification accuracy

In Fig.16 the confusion matrix of SVM showed that 2
instances are classified as medium risk while they are low risk,
4 instances are classified as high risk while they are low risk,
and 12 instances are classified as high risk while they are
medium risk

Confusion Matrix

a b c

20 2 4 a=LR
0 0 12 b=MR
0 0 20 ¢=HR

Fig. 16 SVM risk classification confusion matrix

The results of the experiments are compared in Table 4. The
performances of the three models where evaluated based on
three criteria, the prediction accuracy, learning time and error
rate.

TABLE 4
COMPARISON BETWEEN CLASSIFIERS

Evaluation criteria Classifiers

Naive | KNN SVM

Bayes
Timing to build model (in sec) 0.01 0.01 0.28
Correctly classified instances 53 54 40
Incorrectly classified instances | 5 4 18
Prediction accuracy 91% 93.1% | 68.9%

The results indicate that the K-Nearest Neighbor classifier
outperforms in prediction than Naive Bayes and Support Vector
Machine methods. Although, timing to build the model between
Naive Bayes and KNN is similar but, prediction accuracy differs
significantly.

IV. Conclusion

In this paper, we have proposed model-based resource
utilization and performance risk prediction using machine
learning techniques approach. The performance risk can be
categorized as time-related, or resource related performance
risk. The approach starts by formulating UML diagrams, then
mapping these diagrams into QNM model. We generate training
dataset from QNM model by changing workloads. At the end
we use this dataset to predict resource utilization and
performance risk level.

The value of the work that it will provide an important
feedback for software engineers before the software will be run
in the working environment. Furthermore, it doesn’t require
deep knowledge from software engineer on QNM Model. Due

108

to these reasons, our approach is suitable for analysis of
performance risk at early phases of the software development
life cycle.

In the future work the approach can be totally or partially
automated to enable software engineer to take early decisions
on building software easily starting from converting UML into
QNM up to generating performance datasets.

ACKNOWLEDGMENT

This work was made possible by NPRP grant # [7-662-2-
247] from Qatar Research Fund (a member of Qatar
Foundation). The findings achieved herein are solely the
responsibility of the authors.

REFERENCES

[1] V. Cortellessa, K. Goseva-popstojanova, S. S. Member, K.
Appukkutty, A. R. Guedem, A. Hassan, S. S. Member, R.
Elnaggar, W. Abdelmoez, S. S. Member, H. H. Ammar,
and 1. C. Society, “Model-Based Performance Risk
Analysis,” vol. 31, no. 1, pp. 3-20, 2005.
A. Radhakrishnan and W. Virginia, “Tool Support for
Software Performance Risk Assessment Tool Support
for Software Performance Risk Assessment,” 2007.
H. A. Moniem, “A framework for Performance
Prediction of Service-Oriented Architecture,” vol. 4, no.
11, pp. 865-870, 2015.
B. Islam, “Predict Software Reliability by Support
Vector Machine,” vol. 2, no. 4, pp. 46-52, 2013.
B. Rabta, A. Alp, and G. Reiner, “Queueing Networks
Modeling Software for Manufacturing.”
Z. Omary and F. Mtenzi, “Machine Learning Approach
to Identifying the Dataset Threshold for the
Performance Estimators in Supervised Learning,” Int.
J., vol. 3, no. 3, pp. 314-325,2010.
Z. Omary and F. Mtenzi, “Dataset threshold for the
performance estimators in supervised machine learning
experiments,” 2009 Int. Conf. Internet Technol. Secur.
Trans., vol. 3, no. 3, pp. 314-325, 2009.
Q. Zhang, L. Cherkasova, and E. Smirni, “A
Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications,”
2007.
R. Mohanty, “Classification of Web Services Using
Bayesian Network,” J. Softw. Eng. Appl., vol. 05, no.
04, pp. 291-296, 2012.
N. Based, “Neighbor Based Algorithm for Multi-label
Classification,” pp. 718-721, 2004.
S. Abe, “Fuzzy support vector machines for multilabel
classification,” Pattern Recognit., vol. 48, no. 6, pp.
2110-2117, 2015.
A. Ganapathi, “Predicting and optimizing system
utilization and performance via statistical machine
learning,” UC Berkeley, no. UCB/EECS-2009-181, p.
97, 20009.
K. Singh, E. \.Ipek, S. a McKee, B. R. de Supinski, M.
Schulz, and R. Caruana, “Predicting parallel application
performance via machine learning approaches:

(2]

(3]

(4]
(3]
(6]

(7]

(8]

9]

(10]

(1]

[12]

[13]

[14]

Research Articles,” Concurr. Comput. Pr. Exper., vol.
19, no. 17, pp. 2219-2235, 2007.

E. Ipek, B. R. De Supinski, M. Schulz, E. Ipek, B. R. de
Supinski, B. R. de Supinski, M. Schulz, M. Schulz, S.
A. McKee, and S. A. McKee, “An Approach to
Performance Prediction for Parallel Applications,”
Euro-Par 2005 Parallel Process., pp. 196 — 205, 2005.

109

[15]

[16]

A. Brunnert and H. Krcmar, “Continuous performance
evaluation and capacity planning using resource
profiles for enterprise applications,” J. Syst. Softw.,
2015.

S. Balsamo, R. Mamprin, and M. Marzolla,
“Performance evaluation of software architectures with
queuing network models’,” Work. Sofiw. Perform., 1998.

